Molecular Rearrangement of 3-Substituted 4-Chloro-4,5-epoxide Systems in Ring A of Steroids

John F. Templeton, * V. P. Sashi Kumar, Azza A. M. El-Sheikh, and Talal Hasan Zeglam Faculty of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 Kirk Marat
Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2

Both stereoisomers of the 3 -oxo-, 3 -hydroxy-, and 3 -acetoxy-4-chloro-4,5-epoxy derivatives of 17β acetoxyandrostanes have been synthesized, and their thermal rearrangement products have been identified. A synthesis of the diosphenols, 17β-acetoxy-4-hydroxyandrost-4-en-3-one and 17β -acetoxy-4-hydroxyandrosta-4,6-dien-3-one, through a novel rearrangement of the 3 -hydroxy- and 3 -oxo- 4 -chloro-4,5-epoxides, respectively, is described. In addition to the chloro ketone products from the 3 -acetoxy derivatives, rearrangement and elimination products were also formed. Structural determinations are based upon one- and two-dimensional ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ n.m.r. correlations and analyses.

Thermal molecular rearrangement of chloro epoxides and related reactions have been studied, ${ }^{1,2}$ and it has been generally accepted ${ }^{3.4}$ since the initial postulate of McDonald and Tabor ${ }^{5}$ that the rearrangement proceeds through an α-oxocarbenium ion-chloride ion pair. More recently McDonald and Cousins ${ }^{2}$ have concluded that the rearrangement proceeds by disrotatory $\mathrm{C}_{\beta}-\mathrm{O}$ bond opening to give an α-oxocarbenium ion-chloride ion pair; this accounts for kinetic data for the stereochemistry of the $\mathrm{C}-\mathrm{Cl}$ bond formed.

The thermal rearrangements of α-chloro epoxides with a substituent on a carbon atom adjacent to the chlorine have not been studied. We report here the rearrangement of steroid 3 -oxo, 3-hydroxy, and 3-acetoxy derivatives of 4 -chloro 4,5epoxides, the syntheses of which are outlined in Scheme 1. 4-Chlorotestosterone acetate (17β-acetoxy-4-chloroandrost-4-en-3-one) (1) when treated with hydrogen peroxide and sodium hydroxide slowly reacted to give a mixture of the $5 \alpha-(2)$ and 5β - (3) epoxy ketones ($\alpha: \beta 2: 3$ by h.p.l.c.), from which the 5β epoxy ketone (3) was crystallized. The $5 x$-epoxy ketone (2) was separated by h.p.l.c. but was more readily obtained by oxidation of the 5α-epoxy 3β-alcohol (6 a). Similarly the 5β-epoxy ketone (3) was prepared by oxidation of the 5β-epoxy 3β-alcohol (9 a). The stereochemistry of the $5 \alpha-$ (2) and 5β - (3) epoxides was thus supported by their preparation from the corresponding epoxy alcohols (6a) and (9a), respectively (se later).

4-Chlorotestosterone acetate (1) was reduced with lithium hydridotri-(t-butoxy)aluminate (LTBA) to give as a minor product the $3 x$-alcohol (4) and as the major product the 3β alcohol (5a), which on acetylation gave the 3β-acetate ($\mathbf{5 b}$) (Scheme 1). Epoxidation of $3 x$-alcohol (4) and the 3β-alcohol (5a) with m-chloroperbenzoic acid (m CPBA) gave as the main products the $5 x$-epoxy $3 x$-alcohol ($8 \mathbf{a}$) and the 5β-epoxy 3β alcohol (9a), respectively, as expected by analogy with the stereoselective effect of alcohol groups on epoxidation. ${ }^{6}$ Acetylation of the epoxy alcohols (8a) and (9a) gave the corresponding epoxy acetates ($\mathbf{8 b}$) and ($\mathbf{9 b}$). Epoxidation of the 3β-acetate ($\mathbf{5 b}$) with m CPBA gave principally the 5α-epoxy 3β-acetate ($6 \mathbf{b}$), as the alcohol group is not present to direct β-face attack, and furthermore addition to the α-face of the double bond is favoured because of steric hindrance from the $10-\mathrm{Me}$ group. Treatment of the 3β-alcohol ($5 a$) with t-butyldimethylsilyl chloride ($\mathrm{Bu}^{\prime} \mathrm{Me}_{2} \mathrm{SiCl}$) yielded the siloxane (5 c), which on epoxidation gave mainly the 5α-epoxy siloxane ($\mathbf{6 c}$); treatment with fluoride ion then gave the 5α-epoxy 3β-alcohol ($6 a$). Reduction of the $5 x$-epoxy ketone (2) with LTBA gave a mixture of the 3 -epimeric alcohols ($3 \alpha: 3 \beta 1: 11$ by ${ }^{1} \mathrm{H}$ n.m.r.) with the $5 \alpha-$ epoxy 3β-alcohol (6a) as the major product. Reduction of the 5β-epoxide (3) with LTBA gave as the major product the 5β -
epoxy $3 x$-alcohol (7a) ($3 x: 3 \beta 12: 1$ by ${ }^{1} \mathrm{H}$ n.m.r.), which on acetylation gave the 5β-epoxy $3 x$-acetate (7b). In both cases reduction of the ketone gave the pseudoequatorial alcohol.
The $5 x$-epoxy ketone (2) on heating to reflux in pyridine stereospecifically rearranged to the 5β-chloro diosphenol (11a), further characterized as the acetate (11b) (Scheme 2). Heating either the $5 x$-epoxy ketone (2) or the 5β-chloro diosphenol (11a) at $240^{\circ} \mathrm{C}$ resulted in rearrangement to the dienol (13), indicating that the 5β-chloro diosphenol (11a) is an intermediate in the rearrangement of the $5 x$-epoxy ketone (2). The 5β-chloro diosphenol (11a) when treated with $\mathrm{Zn}-\mathrm{Cu}$ couple was converted through reduction and rearrangement into the diosphenol (10a), and similar treatment of the 5β-chloro diosphenol acetate (11b) also gave the rearranged diosphenol acetate (10b). An analogous series of reactions occurred with the 5β-epoxy ketone (3), which rearranged stereospecifically in pyridine to the $5 x$-chloro diosphenol (12a), further characterized as the acetate (12b). Again at $240^{\circ} \mathrm{C}$, both the 5β-epoxy ketone (3) and the $5 x$-chloro diosphenol (12a) were converted into the same dienol (13) as obtained in the earlier series. The $5 x$-chloro diosphenol (12a) on $\mathrm{Zn}-\mathrm{Cu}$ couple treatment gave the diosphenol (10a); similar treatment of the $5 x$-chloro diosphenol acetate (12b) gave the diosphenol acetate (10b). From both (11b) and (12b) the diosphenol (10a) was also obtained. Reduction of the 5β - (11a and b) and $5 x-$ (12a and b) chloro derivatives with $\mathrm{Zn}-\mathrm{Cu}$ couple led to formation of the more highly substituted enolic 4-en-3-one diosphenol system, which for the 5β - and $5 x$-chloro diosphenol acetates (11b) and (12b) also requires a shift of the acetyl group from C-3 to C-4; this probably occurs through a cyclic zinc intermediate as shown in Scheme 3. The stereospecificity of the initial rearrangements of the 5α - and 5β-epoxy ketones (2) and (3) to the 5β - and 5α chloro derivatives (11a) and (12a) demonstrates that the rearrangements do not take place through a common intermediate such as the proposed x-oxocarbenium ion-chloride ion pair. ${ }^{5}$ A mechanism where $\mathrm{C}_{\mathrm{B}}-\mathrm{O}$ bond breaking precedes $\mathrm{C}_{\alpha}-\mathrm{Cl}$ bond breaking would lead to the observed stereochemistry of the products (11a) and (12a) and is consistent with the relative stability of the tertiary C-5 carbocation. However, the rearrangement occurs, to retain the stereochemistry at C-5 no significant time interval is possible between loss of the chloride ion from C-4 and addition of chlorine at C-5.

Thermolysis of each of the epoxy alcohols (6a), (7a), (8a), and (9a) at $190-200^{\circ} \mathrm{C}$ resulted in rearrangement, in high yield, to give the diosphenol (10a) (Scheme 4). This novel rearrangement of all four isomers suggests a common intermediate such as the α-oxocarbenium ion-chloride ion pair, ${ }^{5}$ although acid-catalysed ring opening is also possible. Epoxide

(2)

(6) $a ; R=H$
$+$

(3)

(4)

(8) $a ; R=H$

(8) $\mathrm{b} ; \mathrm{R}=\mathrm{Ac}$

(5) $a ; R=H$
b; $R=A c$

(9) $a ; R=H$
b; $R=A c$

Scheme 1. Reagents: i, $\mathrm{H}_{2} \mathrm{O}_{2}-\mathrm{NaOH}$; ii, LTBA; iii, $m \mathrm{CPBA}$; iv, Jones reagent; v , $\mathrm{Ac}_{2} \mathrm{O}$-pyridine; vi, $\mathrm{Bu}^{\prime} \mathrm{Me}_{2} \mathrm{SiCl}$-imidazole-DMF; vii, $\mathrm{Bu}_{4} \mathrm{NF}$
ring opening to form the tertiary C-5 carbocation, accompanied by loss of the alcohol hydrogen atom, with migration of the C-3 hydrogen atom and elimination of HCl , would yield the $3,4-$ dioxo derivative which is enolized to the diosphenol (10a). This is a novel synthesis of this system.

Thermolysis of the chloro epoxides (6b), (7b), (8b), and (9b) gave, in some cases, the expected chloro ketones; alternative rearrangements and eliminations occurred with others (see Scheme 5). The 3β-acetoxy- 5β-chloro epoxide (9 b) cleanly rearranged to the expected product, the 5α-chloro 4 -one (21). In
this case all of the stereochemical changes are energetically favourable: the acetoxy function goes from an axial to an equatorial configuration and the ring junction from 5β-(cis) to 5α-(trans) stereochemistry; furthermore, the product has no 1,3diaxial interaction between the chloro and acetoxy substituents. Treatment of the 5α-chloro 4 -one (21) with $\mathrm{Zn}-\mathrm{Cu}$ couple selectively reduced the chlorine to give the 3β-acetoxy ketone (22). Similarly the 3α-acetoxy- 5α-chloro epoxide ($\mathbf{8 b}$) gave the 3α-acetoxy-5 β-chloro 4 -one (20), in which an energetically favourable axial-to-equatorial change of the acetoxy function

Scheme 2. Reagents and conditions: i, pyridine, reflux; ii, $240^{\circ} \mathrm{C}, 5 \mathrm{~min} ; \mathrm{iii}, \mathrm{Zn}-\mathrm{Cu}$ couple; iv, $\mathrm{Ac}_{2} \mathrm{O}$-pyridine

(11b) or (12b)
Scheme 3. Mechanism of Zn reduction and acetyl rearrangement
occurs and no 1,3-diaxial interaction is produced; nevertheless, in this case an unfavourable 5α to 5β change in stereochemistry does occur at the ring junction.

Whether thermolysis of the chloro epoxides gives the normal chloro ketone rearrangement product or leads to rearrangement of the acetoxy function depends upon the availability of the C-3 acetoxy function for intramolecular rearrangement. Rearrangement of the acetoxy function depends on a balance of the interactions present in the starting chloro epoxide and the chloro ketone product. When intramolecular rearrangement of acetate can occur as in (6b) and (7b) (see Scheme 6), it is energetically favoured because of the relief of strain induced by unfavourable steric interactions in the normal rearrangement products. Examination of the changes which occur in the formation of the normal rearrangement product (14) from the 3β-acetoxy- $5 x$-chloro epoxide ($\mathbf{6 b}$) shows that three are energetically unfavourable, viz. the change of the acetoxy function from equatorial to axial, that of the ring junction from 5α to 5β,

Scheme 4.
and the occurrence of a 1,3-diaxial interaction between the chloro and acetoxy substituents. The first two interactions can be relieved by an alternative rearrangement to the $3 x$-chloro- 5β acetoxy 4 -one (15). This rearrangement can be envisaged as an internal attack of the acetoxy carbonyl on a developing or formed charge at C-5, accompanied by chloride ion attack at C-3 rather than C-5. Both products (14) and (15) are obtained. Another rearrangement, initiated by a positive charge at C-5, results in the loss of a $\mathrm{C}-1$ proton and migration of the 9,10 -bond, giving the spiro derivative (16).

The 3α-acetoxy- 5β-chloro epoxide (7b) on thermolysis forms principally the product of $\mathrm{C}-3$ to $\mathrm{C}-5$ acetoxy rearrangement (17). The normal rearrangement product would undergo a change from 5β - to 5α-stereochemistry but the acetoxy function would go from equatorial to axial, and the product would have a 1,3-diaxial interaction of the chloro and acetoxy groups. The acetoxy rearrangement gives an energetically more favoured product with an unchanged stereochemistry for the acetoxy function and a 5β to $5 x$ change at the ring junction, and the $1,3-$ diaxial interaction is removed in forming the 3β-chloro- 5α -

Scheme 5. Reagents and conditions: i, 190- $200^{\circ} \mathrm{C}, 5-10 \mathrm{~min} ; \mathrm{ii}, 130^{\circ} \mathrm{C}, 3.5 \mathrm{~min}$; iii, $\mathrm{Zn}-\mathrm{Cu}, \mathrm{HOAc}$
acetoxy 4 -one (17). Although the ketone (17) was a major product from thermolysis of the epoxide (7b), the 5,6 -unsaturated ketone (18), the 2,5 -dien-4-one (19), and the diosphenol acetate (10b) were also isolated. Formation of (10b), (18b), and (19) can be rationalized as shown in Scheme 7, in which an intermediate $\mathrm{C}-3$ axial acetate formed through epoxide ring opening and loss of HCl can undergo thermal elimination or enolization to give the observed products.

The rearrangement products of ($\mathbf{8 b}$) and ($\mathbf{9 b}$) are not consistent with an α-oxocarbenium ion-chloride ion pair as an intermediate. The 5α-chloro product (trans ring junction) would be expected from chloride ion attack on an intermediate C-5 carbocation unless a concerted rearrangement operated which retained the stereochemistry. Alternatively, an intermediate oxiranyl cation-chloride ion pair would, as a result of chloride ion attack at $\mathrm{C}-5$, lead to the observed products (14) and (12). Thermolysis products of the chloro epoxides (6b) and (7b) may
be formed from either intermediate as the geometry of the acetate requires transfer on the face of the molecule to which it is attached, with chloride ion attack from the opposite face.
N.m.r. Structural Assignments.- ${ }^{1}$ H N.m.r. data of the synthetic compounds are given in Tables $1-6$ and are in general agreement with the structures assigned. ${ }^{7}$ The chloro epoxy ketones (2) and (3) can be distinguished by small differences in the ${ }^{13} \mathrm{C}$ chemical shifts and in the ${ }^{1} \mathrm{H}$ shifts for the $10-\mathrm{Me}$ protons, as well as by the four-bond $10-\mathrm{Me}, 1 x-\mathrm{H}$ coupling seen in (2) but not in (3) (see later). For the isomeric chloro epoxy alcohols larger coupling constants are observed for the pseudoaxial $3-\mathrm{H}$ in (6a) and (7a) than for the pseudoequatorial $3-\mathrm{H}$ derivatives (8a) and (9a). The rearrangement products (11a) and (12a) show a vinylic $2-\mathrm{H}$, and their $10-\mathrm{Me}$ proton shifts are in agreement with estimated values. A four-bond coupling between the $10-\mathrm{Me}$ protons and $1 \alpha-\mathrm{H}$, and the downfield shift of

Table 1. ${ }^{1} \mathrm{H}$ Chemical shifts (J and half-height width, $w_{\frac{1}{2}}$, in Hz) ${ }^{a}$

Compound	13-Me	10-Me	17-OAc	$3-\mathrm{OAc}$	17-H	3-H
(1)	0.84	1.23	2.04		4.60 dd ($J 7.7,9.1$)	
(4)	0.81	1.04	2.04		4.58 dd ($J 7.7,9.1$)	$4.14\left(w_{\frac{1}{2}} 8\right)$
(5a)	0.81	1.10	2.03		4.58 dd ($J 7.8,9.1$)	$4.14\left(w_{\frac{1}{2}} 16\right)$
(5b)	0.82	1.11	2.03	2.10	$4.58 \mathrm{dd}(J 7.7,9.1)$	5.40 ($w_{\frac{1}{2}} 16$)
(5c)	0.80	1.09	2.04		$4.58 \mathrm{dd}(J 7.7,9.1)$	4.15 ddd $(J 1.7,6.8,6.8)$
(6a)	0.81	1.13	2.04		4.60 dd ($J 7.7,9.1$)	4.05t ($J 8.5$)
(6b)	0.81	1.14	2.03	2.12	4.60 dd ($J 7.8,9.2$)	$5.25 t(J 8.6)$
(6c)	0.81	1.12	2.03		4.60 dd ($J 7.8,9.1$)	3.99 t ($J^{8.2}$)
(7a)	0.80	1.02	2.03		4.58 dd ($J 7.7,9.2$)	4.10t (J 6.6)
(7b)	0.82	1.04	2.04	2.14	4.62 dd ($J 7.7,9.1$)	5.33 t (J 6.2)
(8a)	0.81	1.08	2.04		$4.61 \mathrm{ldd}(J 7.8,9.1)$	4.30d ($J 5.7$)
(8b)	0.81	1.09	2.04	2.17	4.61 dd ($J 7.7,9.1$)	$5.52 \mathrm{~d}(J 6.6)$
(9a)	0.81	1.04	2.05		4.60 dd ($J 7.7,9.1$)	$4.30 \mathrm{dd}(J 3.1,5.4)^{b}$
(9b)	0.82	1.06	2.05	2.17	$4.61 \mathrm{dd}(J 7.7,9.2)$	$5.49 \mathrm{dd}(J 3.9,5.8)$
(10a)	0.83	1.18	2.04		4.60 dd ($J 7.7,9.1$)	
(10b)	0.84	1.25	2.04	2.23	$4.60 \mathrm{dd}(J 7.8,9.1)$	
(11a)	0.77	1.23	2.02		$4.53 \mathrm{dd}(J 7.8,9.1)$	
(12a)	0.80	1.06	2.04		4.63 dd ($J 7.7,9.1$)	
(13)	0.88	1.10	2.05		$4.64 \mathrm{dd}(J 7.2,8.9)$	
(18)	0.82	1.00	2.05	2.17	$4.63 \mathrm{dd}(J 7.7,9.1)$	$5.20 \mathrm{dd}(J 7.3,12.4)$
(19)	0.82	1.09	2.04		$4.63 \mathrm{dd}(J 7.8,9.1)$	$6.11 \mathrm{dd}(J$ 2.8, 10.2)

Other
3.25ddd $(J 2.6,4.1,15.0)(6 \alpha-\mathrm{H})$
2.94ddd $(J 2.7,4.1,14.3)(6 \alpha-\mathrm{H})$
2.40d $(J 3)(3-\mathrm{OH}) ; 2.92 \mathrm{ddd}(J 2.7 .4 .1,14.4)(6 x-\mathrm{H})$
2.99ddd $(J 2.7,4.1,14.2)(6 x-\mathrm{H})$
$0.11,0.15,0.92(\mathrm{Bu} \mathrm{M} \mathrm{eSiO}) ; 2.98 \mathrm{ddd}(J 2.8,4.0$,
$14.2)(6 x-\mathrm{H})$

$0.11,0.15,0.92(\mathrm{Bu} \mathrm{MeSiO})$
$2.37 \mathrm{br} \mathrm{s}(3-\mathrm{OH})$

3.01ddd $(J 2.4,4.6,15.1)(6 \alpha-\mathrm{H}) ; 6.06 \mathrm{~s}(4-\mathrm{OH})$
$2.68 \mathrm{ddd}(J 2.5,4.2,14.9)(6 \alpha-\mathrm{H}) ; 2.09 \mathrm{~s}(4-\mathrm{OAc})$
$5.85 \mathrm{br} \mathrm{s}(3-\mathrm{OH}) ; 5.93 \mathrm{dd}(J 2.9,7.1)(2-\mathrm{H})$
$5.68 \mathrm{br} \mathrm{s}(3-\mathrm{OH}) ; 5.94 \mathrm{dd}(J 2.8,6.8)(2-\mathrm{H})$
6.00dd $(J 2.1,9.9)(6-\mathrm{H}) ; 6.20 \mathrm{~s}(4-\mathrm{OH}) ; 6.65 \mathrm{dd}(J$
$2.8,9.9)(7-\mathrm{H})$
6.36dd $(J 2.6,5.0)(5-\mathrm{H})$
6.78dd $(J 2.6,5.3)(6-\mathrm{H}) ; 6.87 \mathrm{ddd}(J 2.3,6.4,10.0)$
(2-H)
${ }^{4}$ For solutions in CDCl_{3} (SiMe_{4} internal standard); a Bruker AM300 Instrument. ${ }^{b}$ Decoupled from 3-OH.

(7b)

Scheme 6. 3.5-Acetoxy rearrangement
the $9-H$ signal confirms the $5 x$-stereochemistry of (12b) (see later). The chloro epoxy ketones (2) and (3) and the thermal rearrangement products (11b), (12b), (14)-(17), and (20)-(22) were analysed in greater detail as shown in Tables 2-6.

The C-5 stereochemistry of the $3 x$-acetoxy ketone (22) can be determined directly as α from ${ }^{3} J_{5.6 \beta}$ (Table 4). For the C-5 substituted compounds the stereochemistry had to be established by more indirect methods. In 5α-steroids the $1 x-\mathrm{H}$ is axial
and has a four-bond W coupling of $c a .0 .5 \mathrm{~Hz}$ with the $10-\mathrm{Me}$ protons. This coupling can be observed as a broadening of the $1 \alpha-\mathrm{H}$ signal, a splitting of the $10-\mathrm{Me}$ signal (especially when resolution is enhanced), and a cross-peak in the COSY spectrum. In 5β-steroids, however, the $1 \alpha-\mathrm{H}$ is equatorial and does not couple significantly with the $10-\mathrm{Me}$. This absence of coupling leaves the $10-\mathrm{Me}$ signal measurably sharper and more intense than the $10-\mathrm{Me}$ signal in the corresponding $5 x$ derivative. This absence of coupling can also be observed in the COSY spectrum. The different substituent effects of chlorine versus acetate in the ${ }^{13} \mathrm{C}$ spectrum allow a distinction to be made between $3-\mathrm{Cl}, 5-\mathrm{OAc}$ and $3-\mathrm{OAc}, 5-\mathrm{Cl}$ substitution.

Nuclear Overhauser effect (n.O.e.) measurements also provide evidence regarding the C-5 stereochemistry (Table 6). In the 5α-compounds an n.O.e. is observed between the $2 \beta-\mathrm{H}$ and the $10-\mathrm{Me}$. In the 5β-compounds these protons are too remote for a significant n.O.e. In $5,17 \beta$-diacetox y - 3α-chloro- 5β -androstan-4-one (15), however, there is an n.O.e. between the $10-\mathrm{Me}$ and the $5-\mathrm{OAc}$. This n.O.e. is possible only with a $5 \beta-$ stereochemistry. Once the C-5 stereochemistry has been established the C-3 stereochemistry may easily be deduced from the ring- A coupling constants (Table 4). Furthermore, a downfield shift of the $1 \alpha-\mathrm{H}, 3 \alpha-\mathrm{H}, 7 \alpha-\mathrm{H}$, and $9 \alpha-\mathrm{H}$ signals in (21) as compared with (22) is observed, which probably results from 1,3-diaxial interaction with the axial $5 x-\mathrm{Cl}$. A similar but smaller effect is observed in (17), with axial $5 x$-OAc.

The spiro compound (16) showed a n.O.e. from the $10-\mathrm{Me}$ to the $13-\mathrm{Me}$ and $11 \beta-\mathrm{H}$ which confirms the stereochemistry at $\mathrm{C}-5$. The $3-\mathrm{H}$ shows an axial coupling and a positive n.O.e. to the equatorial $2-\mathrm{H}$, and a negative n.O.e. to the axial $2-\mathrm{H}$. A positive n.O.e. is observed from $3-\mathrm{H}$ to $9-\mathrm{H}$ and $11 \alpha-\mathrm{H}$, and a negative n.O.e. from $3-\mathrm{H}$ to $11 \beta-\mathrm{H}$; therefore the $3-\mathrm{H}$ is adjacent to the $11 x-\mathrm{H}$. The conformation of (16) is probably either a C-3 sofa or a C-2,C-3 half-chair, or some intermediate geometry. Difference double resonance ${ }^{8}$ from $13-\mathrm{Me}$ isolates the $12 \alpha-\mathrm{H}$ signal; all other C and H signals were assigned by COSY^{9} and heteronuclear correlation experiments ${ }^{10}$ (Tables 2, 3, and 5).

Table 2. ${ }^{13} \mathrm{C}$ Chemical shifts

${ }^{a}$ Not observed, probably under CDCl_{3} peak.

Table 3. Chemical shifts

	$5 \times$					5β					
	(2)	(12b)	(17)	(21)	(22)	(3)	(11b)	$(14)^{a}$	(15)	(16)	(20)
H	5x-Epoxide	$\begin{gathered} 3-\mathrm{OAc}, \\ 5 x-\mathrm{Cl} \end{gathered}$	$\begin{gathered} 3 \mathrm{~B}-\mathrm{Cl}, \\ 5 x-\mathrm{OAc} \end{gathered}$	3ß-OAc, $5 x-\mathrm{Cl}$	$3 \beta-\mathrm{OAc}$, $5 x-\mathrm{H}$	5β-Epoxide	$\begin{gathered} 3-\mathrm{OAc}, \\ 5 \beta-\mathrm{Cl} \end{gathered}$	3β-OAc, $5 B-\mathrm{Cl}$	$\begin{gathered} 3 \alpha-\mathrm{Cl}, \\ 5 \mathrm{~B}-\mathrm{OAc} \end{gathered}$		$3 x-\mathrm{OAc},$ $5 \beta-\mathrm{Cl}$
$1 x^{\text {b }}$	1.70	2.57	1.92	2.06	1.54	$1.611^{\text {c.d,e }}$	2.42		1.69	For	1.74
$1 \beta^{b}$	1.62	2.26	1.56	1.66	1.96	$1.66{ }^{\text {c.d.e }}$	2.66		1.92	Ring A	2.14
$2 x / 2^{\text {b }}$	2.55	6.39	2.39	2.22	2.22	2.28	6.39		1.84	data	1.78
$2 \beta^{\text {b }}$	2.37		1.94	1.85	1.88	2.45			2.23	see	2.06
$3 x^{\text {b }}$			4.67	6.17	5.16			5.12		Table 5	
$3 \beta^{b}$									4.60		5.96
5					$2.20{ }^{\text {c.d.f }}$						
$6 \times$	$1.86{ }^{\text {d }}$	$1.69^{\text {c.d }}$	$2.11^{\text {d }}$	$1.65{ }^{\text {d }}$	$1.63{ }^{\text {d.f }}$	$1.92{ }^{\text {d }}$	$1.63{ }^{\text {c }}$	2.45	2.59	$2.55{ }^{\text {c. }{ }^{\text {d }} \text { d }}$	2.43
6β	$2.08{ }^{\text {d }}$	$1.35{ }^{\text {c.d }}$	$1.92{ }^{\text {d }}$	$1.48{ }^{\text {d }}$	$1.45{ }^{\text {c.d }}$	$2.14{ }^{\text {d }}$	$0.95{ }^{\text {c }}$		$1.48^{\text {c. }}$.	$1.65{ }^{\text {c,d, },}$	$1.93{ }^{\text {c.d.f }}$
$7 \times$	$1.22^{\text {d }}$	$1.91{ }^{\text {d }}$	$0.96{ }^{\text {d }}$	$1.86{ }^{\text {d }}$	$0.83{ }^{\text {d }}$	$1.09{ }^{\text {d }}$	1.92		$1.60{ }^{\text {c.d }}$	$1.21{ }^{\text {c.d }}$	$1.25{ }^{\text {c.d }}$
7β	$1.83{ }^{\text {d }}$	$2.15{ }^{\text {d }}$	$1.55{ }^{\text {c.d }}$	$2.03{ }^{\text {d }}$	$1.76{ }^{\text {d }}$	$1.87{ }^{\text {d }}$	2.63		$1.64{ }^{\text {d }}$	$1.81{ }^{\text {c. } . ~}{ }^{\text {d }}$	$1.62^{\text {c.d }}$
8	1.52^{d}	$1.45{ }^{\text {d }}$	$1.43{ }^{\text {d }}$	$1.46{ }^{\text {d,f }}$	$1.32^{\text {d.f }}$	$1.65{ }^{\text {d }}$	$1.51{ }^{\text {d }}$		1.49 d.f	$1.72{ }^{\text {d.f }}$	$1.50{ }^{\text {d.f }}$
9	$1.15{ }^{\text {d }}$	$1.70^{\text {d }}$	$1.57{ }^{\text {d }}$	$1.72{ }^{\text {d }}$	$0.94{ }^{\text {d }}$	$1.17{ }^{\text {d }}$	$1.54{ }^{\text {d }}$		$0.98{ }^{\text {d }}$	$1.13^{\text {d.f }}$	$0.97{ }^{\text {c.d }}$
$11 \times$	$1.50{ }^{\text {d }}$	$1.49{ }^{\text {d }}$	$1.45{ }^{\text {d }}$	$1.52{ }^{\text {d }}$	$1.61{ }^{\text {d }}$	$1.45{ }^{\text {d }}$	$1.4{ }^{\text {d }}$		$1.32{ }^{\text {d }}$	$1.65{ }^{\text {d. }}$ /	$1.48{ }^{\text {d }}$
11β	$1.33{ }^{\text {d }}$	$1.32{ }^{\text {d }}$	$1.28{ }^{\text {d }}$	$1.24{ }^{\text {d }}$	$1.26{ }^{\text {d }}$	$1.3{ }^{\text {d }}$	$1.4{ }^{\text {d }}$		$1.32{ }^{\text {d }}$	$1.46{ }^{\text {d.f }}$	$1.37{ }^{\text {d.f }}$
$12 x$	$1.21{ }^{\text {c }}$	$1.27{ }^{\text {c.d }}$	$1.23{ }^{\text {c,d }}$	$1.26{ }^{\text {c.d.g }}$	$1.21{ }^{\text {c.d. }}$ f	$1.19{ }^{\text {c }}$	$1.22^{\text {c. } d}$		$1.13{ }^{\text {c.d }}$	$1.20^{\text {c.d. f.g }}$	$1.15{ }^{\text {c. }}$ \%
12β	1.77^{d}	$1.79{ }^{\text {d }}$	1.77^{d}	$1.80{ }^{\text {d.f }}$	$1.76{ }^{\text {d }}$	$1.78{ }^{\text {c.d }}$	1.72		$1.74{ }^{\text {d, }}$	1.81	$1.75{ }^{\text {c.d. }}$.
14	$1.20{ }^{\text {d }}$	$1.18{ }^{\text {d }}$	$1.11{ }^{\text {d }}$	$1.03{ }^{\text {d }}$	$1.05^{\text {d. }}$	$1.12{ }^{\text {d }}$	0.98		$1.04{ }^{\text {d }}$	$1.12{ }^{\text {d.f }}$	$0.98{ }^{\text {c,d.f }}$
15\%	$1.73{ }^{\text {c }}$	$1.68{ }^{\text {c }}$	$1.60^{\text {d }}$	$1.66{ }^{\text {d }}$	$1.64{ }^{\text {d }}$	$1.69{ }^{\text {c }}$	$1.55{ }^{\text {c }}$		$1.66{ }^{\text {d }}$	$1.68{ }^{\text {d }}$	$1.60{ }^{\text {d }}$
${ }_{15} \beta^{\prime}$	$1.38{ }^{\text {c }}$	$1.35{ }^{\text {d }}$	$1.31{ }^{\text {d }}$	$1.33{ }^{\text {d }}$	$1.32{ }^{\text {d }}$	$1.38{ }^{\text {d }}$	$1.26{ }^{\text {c }}$		$1.28{ }^{\text {d }}$	$1.42{ }^{\text {d }}$	$1.28{ }^{\text {d }}$
16%	$2.18{ }^{\text {c }}$	$2.18{ }^{\text {c }}$	$2.15{ }^{\text {c.d }}$	$2.20{ }^{\text {c.d }}$ d	$2.16^{\text {c.d }}$	$2.18{ }^{\text {c }}$	$2.13{ }^{\text {c }}$		$2.17{ }^{\text {c.d }}$	$2.20{ }^{\text {c.d }}$	$2.15{ }^{\text {c.d }}$
16β	$1.52^{\text {c }}$	$1.51{ }^{\text {c }}$	$1.51{ }^{\text {c.d }}$	$1.53{ }^{\text {c.d }}$	$1.51{ }^{\text {c.d. }} \mathrm{s}$	$1.52{ }^{\text {c }}$	$1.50{ }^{\text {c }}$		$1.51{ }^{\text {c.d }}$	$1.50{ }^{\text {c.d }}$	$1.50{ }^{\text {c.d }}$
17 x	4.62	4.63	4.62	4.61	4.60	4.59	4.56	4.55	4.54	4.58	4.56
$10-\mathrm{Me}$	1.100	1.130	0.852	0.944	0.754	1.163	1.248	1.20	1.126	1.810	1.203
$13-\mathrm{Me}$	0.822	0.795	0.790	0.772	0.772	0.813	0.766	0.77	0.747	0.73	0.768
$3-\mathrm{OAc}$		2.234		2.146	2.213		2.237	2.087		2.152	2.170
$5-\mathrm{OAc}$			2.148						2.086		
17-OAc	2.033	2.037	2.029	2.025	2.028	2.029	2.012	2.030	2.015	2.031	2.027

[^0]Table 4. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ Couplings ${ }^{a}$

	$5 \times$					5β				
	(2)	(12b)	(17)	(21)	(22)	(3)	(11)	(14)	(15)	(20)
		3-OAc,	$3 \beta-\mathrm{Cl}$,	$3 \beta-\mathrm{OAc}$	$3 \beta-\mathrm{OAc},$		3-OAc,	$3 \beta-\mathrm{OAc}$	$3 x-\mathrm{Cl}$	$3 x-\mathrm{OAc},$
	5 x -Epoxide	$3 x-\mathrm{Cl}$	$5 x-\mathrm{OAc}$	$5 \alpha-\mathrm{Cl}$	$5 x-\mathrm{H}$	5β-Epoxide	$5 \beta-\mathrm{Cl}$	$5 \beta-\mathrm{Cl}$		
${ }^{2} J(1 \alpha, 1 \beta)$	-13.48	-18.73	-13.93	-14.00	-13.66	$-13.5{ }^{\text {b }}$	-19.00		-14.75	-15.25
${ }^{3} J(1 x, 2 x)$	6.24	$2.48{ }^{\text {c }}$	4.99	4.72	4.01	6.22	$7.08{ }^{\text {c }}$		3.00	4.04
${ }^{3} J(1 \alpha, 2 \beta)$	12.78		13.88	13.70	13.67	2.63			3.09	3.04
${ }^{3} J(1 \beta, 2 \alpha)$	1.80	$6.42{ }^{\text {d }}$	2.48	2.47	2.80	13.70	$2.39^{\text {d }}$		14.63	14.96
${ }^{3} J(1 \beta, 2 \beta)$	7.22		4.56	5.21	4.35	4.94			3.79	4.05
${ }^{2} J(2 \alpha, 2 \beta)$	-19.54		-13.77	-13.80	-12.80	-18.67			-13.27	- 12.41
${ }^{3} J(2 \alpha, 3)$			7.17	8.16	7.35			$3.3{ }^{\text {e }}$	12.61	12.63
${ }^{3} J(2 \beta, 3)$			12.65	12.10	12.56			$3.4{ }^{e}$	6.47	7.41
${ }^{4} J(3,5)$					1.21					
${ }^{3} J(5,6 x)$					3.16					
${ }^{3} J(5,6 \beta)$					12.40					

" Root mean square deviation $0.05-0.20 \mathrm{~Hz}$; standard errors $0.03-0.20 \mathrm{~Hz} .{ }^{b}$ Not iterated; lines highly overlapped. ${ }^{c} J(1 x, 2)$. ${ }^{e}$ Insufficient material for detailed analysis; first-order approximation.
(19)

(18)

(10b)

Scheme 7. i, 3,4-Acetoxy shift; ii, C-3 protonation

Experimental

${ }^{1} \mathrm{H}$ N.m.r. spectra were recorded for solutions ($30-100 \mathrm{~mm}$) in deuteriochloroform with a Bruker AM 300 spectrometer, using a 5 mm dual ${ }^{13} \mathrm{C} /{ }^{1} \mathrm{H}$ probe. Proton and carbon spectra were recorded for each compound, and carbon multiplicities were determined with the DEPT ${ }^{11}$ sequence. Homonuclear correlation (COSY) ${ }^{9}$ and heteronuclear correlation (C-H) ${ }^{10}$ spectra were recorded for all compounds except (15). Proton and carbon shifts were assigned by complementary analysis of the COSY and heteronuclear correlation spectra (Tables 2 and 3). N.O.e. difference spectroscopy ${ }^{8}$ and difference doubleresonance techniques ${ }^{8}$ were used to confirm the shift assignments and to confirm or establish some of the stereochemical assignments. Individual proton multiplets observed with these techniques had structures consistent with the proposed assignments in every case. Because the ring A protons are tightly coupled, the ring A proton spectra were analysed with the PANIC program ${ }^{12}$ on an ASPECT 3000 computer using previously reported techniques. ${ }^{13}$ This analysis was necessary to ensure reliable ring A coupling constants. Tables 1 and 2 give the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ n.m.r. data.
H.p.l.c. was carried out on a Waters μ-Porasil $(10 \mu \mathrm{~m})$ column in 10% ethyl acetate-hexane (unless otherwise stated) with a 1.5 $\mathrm{ml} \mathrm{min}{ }^{-1}$ flow rate (Waters M45 instrument and RI detector). Thin-layer chromatography refers to precoated silica gel plates (Merck 60 F 254) run in $10-25 \%$ ethyl acetate-hexane unless otherwise stated; plates were sprayed with 4% concentrated sulphuric acid in ethanol and heated $5-10 \mathrm{~min}$ at $110^{\circ} \mathrm{C}$ to produce a characteristic colour. Column chromatography was carried out on either neutral alumina or silica gel (Merck type 60 H for t.l.c.). Elemental analyses were performed by Mr. W. Baldeo, School of Pharmacy, University of London, England.

4-Chlorotestosterone Acetate (1).-The acetate (1), m.p. 228$231^{\circ} \mathrm{C}$ (lit., ${ }^{14} 228-230^{\circ} \mathrm{C}$), was prepared from testosterone acetate by the method of Mori. ${ }^{15}$

17 β-Acetoxy-4 3 -chloro-4,5-epoxy-5 α-androstan-3-one (2).The 5α-epoxy 3β-alcohol ($\mathbf{6 a}$) (300 mg) in acetone was treated with an excess of Jones reagent for 5 min to give the 5α-epoxy ketone (2) (225 mg), m.p. $161-163{ }^{\circ} \mathrm{C}$ (Found: C, 66.2; H, 7.6; $\mathrm{Cl}, 9.3 . \mathrm{C}_{21} \mathrm{H}_{29} \mathrm{ClO}_{4}$ requires $\left.\mathrm{C}, 66.2 ; \mathrm{H}, 7.7 ; \mathrm{Cl}, 9.3 \%\right)$.

17 β-Acetoxy-4 α-chloro-4,5-epoxy-5 β-androstan-3-one (3).(a) From 4-chlorotestosterone acetate (1). To the acetate (1) (1.1 g) in methanol (105 ml) cooled to $5^{\circ} \mathrm{C}$ were added 4 M NaOH $(4.5 \mathrm{ml})$ and $10 \% \mathrm{H}_{2} \mathrm{O}_{2}(4.5 \mathrm{ml})$, and cooling was maintained for 18 h . The mixture was acidified with HOAc, diluted with water, and extracted with ether to give a crystalline product, which was dissolved in pyridine (10 ml). Acetic anhydride (5 ml) was added. The mixture was set aside overnight at $20^{\circ} \mathrm{C}$ then poured into ice-water, acidified, and extracted with ether. The crystalline product (1.0 g) consisted of two components (t.l.c.), separated by two solvent developments ($5 \alpha: 5 \beta 2: 3$ by h.p.l.c. in dichloromethane). Recrystallization gave the 5β-epoxide (3) (230 mg), m.p. $153-162^{\circ} \mathrm{C}$ (from dichloromethane-acetone). Several recrystallizations gave a sample of m.p. $162-166^{\circ} \mathrm{C}$ (Found: C, 66.0; H, 7.7; Cl, 9.1. $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{ClO}_{4}$ requires C, $66.2 ; \mathrm{H}$, $7.7, \mathrm{Cl}, 9.3 \%$). The h.p.l.c. fraction containing the 5α-epoxide (2) gave a ${ }^{1} \mathrm{H}$ n.m.r. spectrum identical with that of the product from (6a).
(b) From the 5β-epoxy $3 x$-alcohol (9a). The alcohol (9a) (100 mg) in acetone was treated with an excess of Jones reagent for 5 min to give the 5β-epoxy ketone (3) (70 mg), m.p. $160-165^{\circ} \mathrm{C}$; the ${ }^{1} \mathrm{H}$ n.m.r. spectrum was the same as that of the product from (1).
17β-Acetoxy- $3 \alpha-h y d r o x y-$ (4) and 17β-Acetoxy- 3β-hydroxy(5a) 4-chloroandrost-4-ene.-4-Chlorotestosterone acetate (1) (10 g) and 85% w/w lithium hydrido tri-(t-butoxy)aluminate $(16.8 \mathrm{~g})$ were dissolved in freshly distilled tetrahydrofuran (450 ml) in an ice-bath under argon. The mixture was stirred for 3 h , after which no starting material remained (t.l.c.; 2% acetonedichloromethane). The mixture was poured into an excess of cold dilute hydrochloric acid and extracted with dichloromethane. The organic layer was washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. T.l.c. of the crystalline residue showed one minor and one major component (2% acetonedichloromethane) ($3 \alpha: 3 \beta 0.7: 9.3$ by h.p.l.c.). Column chromatography over silica gel in 10% dichloromethane-cyclohexane (elution with 15% dichloromethane-hexane, with 5% increments of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave the 3β-alcohol ($5 \mathrm{5a}$) $(6.7 \mathrm{~g})$, m.p. $172-$

Table 5. Ring $A{ }^{1} \mathrm{H}$ data (δ values; J in Hz) for spiro compound (16) ${ }^{a}$

H-1	5.498	${ }^{3} J(1,2 e q)$	6.14 ± 0.04
H-2eq	2.645	${ }^{3} J(1,2 q a x)$	2.01 ± 0.04
H-2ax	2.415	${ }^{2} J(2 e q, 2 a x)$	-16.32 ± 0.04
H-3ax	5.347	${ }^{3} J(2 e q, 3 a x)$	7.94 ± 0.04
		${ }^{3} J(2 a x ; 3 a x)$	11.81 ± 0.04

${ }^{a}$ Uncertainties are $2 \times$ probable errors; root mean square deviation 0.032 Hz .
$174{ }^{\circ} \mathrm{C}$ (from dichloromethane-ethyl acetate) (Found: C, 68.5; $\mathrm{H}, 8.7 ; \mathrm{Cl}, 9.7 . \mathrm{C}_{21} \mathrm{H}_{31} \mathrm{ClO}_{3}$ requires $\left.\mathrm{C}, 68.7 ; \mathrm{H}, 8.5 ; \mathrm{Cl}, 9.7 \%\right)$. Elution with 2-3\% acetone-dichloromethane gave fractions $(0.51 \mathrm{~g})$ which on three recrystallizations afforded the $3 x$-alcohol (4) (250 mg), m.p. $177-179{ }^{\circ} \mathrm{C}$ (from dichloromethane-ethyl acetate) (Found: C, 68.6; H, 8.6; $\mathrm{Cl}, 9.5 . \mathrm{C}_{21} \mathrm{H}_{31} \mathrm{ClO}_{3}$ requires C, $68.7 ; \mathrm{H}, 8.5 ; \mathrm{Cl}, 9.7 \%$).
$3 \beta, 17 \beta$-Diacetoxy-4-chloroandrost-4-ene (5b). The 3 3β alcohol ($\mathbf{5 a}$) (400 mg) was dissolved in dry pyridine (4 ml), acetic anhydride (2 ml) was added, and the mixture was kept at room temperature overnight. Dilution with ice-water, acidification, extraction with ether, and evaporation of the solvent left a residue, which gave the 3β-acetate ($\mathbf{5 b}$) (315 mg), m.p. 145 $147^{\circ} \mathrm{C}$ (from dichloromethane-methanol) (lit., ${ }^{16} 145-147^{\circ} \mathrm{C}$).

17 β-Acetoxy-4-chloro-3 3 -t-butyldimethylsilyloxyandrost-4ene ($\mathbf{5 c}$).-To a stirred mixture of the 3β-alcohol (5a) (6.7 g) and dry dimethylformamide (DMF) (13.4 ml) were added $\mathrm{Bu}^{1} \mathrm{Me}_{2} \mathrm{SiCl}(3.3 \mathrm{~g})$ and imidazole (3.1 g) as described by Corey. ${ }^{17}$ After 20 min at room temperature the mixture was diluted with sodium hydrogen carbonate solution and extracted with ether. Recrystallization from acetone gave the siloxane (5c) (6.4 g), m.p. $146-149^{\circ} \mathrm{C}$ (Found: C, 67.5; H, 9.4; Cl, 7.2. $\mathrm{C}_{27} \mathrm{H}_{45} \mathrm{ClO}_{3} \mathrm{Si}$ requires $\mathrm{C}, 67.4 ; \mathrm{H}, 9.4 ; \mathrm{Cl}, 7.4 \%$).

173-Acetoxy-4 3 -chloro-33-hydroxy-4,5-epoxy-5x-androstane (6a).-(a) From the 5α-epoxy ketone (2). To a solution of the $5 \alpha-$ epoxy ketone (2) (50 mg) in dry ether (50 ml) was added 85% w / w LTBA (72 mg). The mixture was stirred at room temperature for 2 h and acetone (2 ml) was added. The mixture was poured into an excess of cold dilute HCl and extracted with ether to yield a crystalline product (49 mg), m.p. $115-123^{\circ} \mathrm{C}$. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum showed a mixture of 3 -epimers $(\alpha: \beta$ $1: 11$). Recrystallization gave the 5α-epoxy 3β-alcohol (6a) (20 mg), m.p. $123-125^{\circ} \mathrm{C}$ (from ether-acetone), identical (${ }^{1} \mathrm{H}$ n.m.r.) with that obtained from ($\mathbf{6 c}$).
(b) From the $5 x$-epoxy siloxane ($\mathbf{6 c}$). To a solution of the $5 x-$ epoxy siloxane $(6 c)(196 \mathrm{mg})$ in dry tetrahydrofuran $(2.5 \mathrm{ml})$ was added tetrabutylammonium fluoride ($1 \mathrm{ml} ; 1 \mathrm{~m}$ solution in tetrahydrofuran), as described by Corey. ${ }^{17}$ After 30 min the mixture was diluted with water and extracted with ether to give the $5 x$-epoxy 3β-alcohol (6 a) (94 mg), m.p. $119-123^{\circ} \mathrm{C}$ (from dichloromethane-methanol) (Found: C, 66.0; H, 8.3; Cl, 9.15. $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{ClO}_{4}$ requires $\mathrm{C}, 65.9 ; \mathrm{H}, 8.2 ; \mathrm{Cl}, 9.3 \%$).
$3 \beta, 17 \beta$-Diacetoxy-4 β-chloro-4,5-epoxy-5 5 -androstane ($\mathbf{6 b}$).The 3β-acetate ($\mathbf{5 b}$) (1 g) was dissolved in dichloromethane (50 $\mathrm{ml})$ and $85 \% m$ CPBA $(987 \mathrm{mg})$ was added at room temperature.

Table 6. Nuclear Overhauser effects

Protons irradiated	Protons showing n.O.e.					
	5x				5β	
	(2)	(17)	(21)	(22)	(15)	(20)
	$5 x$-Epoxide	$3 \beta-\mathrm{Cl}, 5 \mathrm{x}-\mathrm{OAc}$	$3 \beta-\mathrm{OAc}, 5 \mathrm{x}-\mathrm{Cl}$	$3 \beta-\mathrm{OAc}, 5 \alpha-\mathrm{H}$	$3 x-\mathrm{Cl}, 5 \beta-\mathrm{OAc}$	$3 x-\mathrm{OAc}, 5 \beta-\mathrm{Cl}$
2χ	$2 \beta, 1 \alpha$	$2 \beta, 3 \beta$				
2β	2χ				$2 \alpha, 3 \beta$	
3		$2 x, 1 \times$	$2 \times$	1x, 5	$2 x$	2β
$6 \times$					6β	$6 \beta, 7 \beta$
$17 \times$			16x, 12x	12x, 14, 16x		12x, 14, 16x
$10-\mathrm{Me}$	$2 \beta, 6 \beta, 8$	$1 \beta, 2 \beta, 6 \beta, 8$	$1 \beta, 2 \beta, 8,11 \beta$	$2 \beta, 8,11 \beta$	5 -OAc, 6β	$1 \beta, 11 \beta, 13-\mathrm{Me}$
$13-\mathrm{Me}$					$8,13-\mathrm{Me}$	
			8,12 β	8,11	$8,11 \beta, 12 \beta$	$8,11 \beta, 12 \beta$
			17-OAc		10-Me, 17-OAc	$17-\mathrm{OAc}$

Next day t.l.c. showed no starting material and the formation of two products ($5 x: 5 \beta 2: 1$ by h.p.l.c.). The mixture was washed thoroughly with an excess of 10% sodium sulphite, 5% sodium carbonate, and water to give, after evaporation at reduced pressure, a crystalline product. Several recrystallizations from dichloromethane-methanol gave the epoxide ($\mathbf{6 b}$) $(381 \mathrm{mg})$, m.p. $158-160^{\circ} \mathrm{C}$ (Found: C, $64.9 ; \mathrm{H}, 7.7 ; \mathrm{Cl}, 8.5 . \mathrm{C}_{23} \mathrm{H}_{33} \mathrm{ClO}_{5}$ requires $\mathrm{C}, 65.0 ; \mathrm{H}, 7.8 ; \mathrm{Cl}, 8.3 \%$).

17 β-Acetoxy-4 β-chloro-3 3 -t-butyldimethylsilyloxy-4,5-epoxy- $5 x$-androstane ($\mathbf{6 c}$).-To a solution of the siloxane ($\mathbf{5 c}$) $(6.0 \mathrm{~g})$ in dichloromethane (120 ml) was added $85 \% \mathrm{w} / \mathrm{w}$ m CPBA (5.1 g). After 18 h at room temperature the reaction was worked up as for the 5β-epoxy alcohol (9 a) to give the 5α-epoxy siloxane ($6 \mathbf{c}$) (2.9 g), m.p. $170-173^{\circ} \mathrm{C}$ (Found: C, 65.2 ; H, 9.0 ; $\mathrm{Cl}, 7.0 . \mathrm{C}_{2}{ }_{7} \mathrm{H}_{45} \mathrm{ClO}_{4} \mathrm{Si}$ requires $\left.\mathrm{C}, 65.2 ; \mathrm{H}, 9.1 ; \mathrm{Cl}, 7.1 \%\right)$.
17β-Acetoxy- 4α-chloro- 3α-hydroxy-4,5-epoxy-5 β-androstane (7a).-To a solution of the 5β-epoxy ketone (3) $(83 \mathrm{mg})$ in dry ether (28 ml) was added $85 \% \mathrm{w} / \mathrm{w}$ LTBA (103 mg) and the mixture was stirred for 2 h at room temperature. After work-up as described for the conversion of (2) into (5a), the ${ }^{1} \mathrm{H}$ n.m.r. spectrum of the crude crystalline product (83 mg) showed a mixture of 3-epimers ($\alpha: \beta 12: 1$). Recrystallization gave the 5β epoxy $3 x$-alcohol (7a) (52 mg), m.p. $207-209^{\circ} \mathrm{C}$ (from di-chloromethane-ethyl acetate). Reduction of (3) with 1 mol equiv. of NaBH_{4} in ethanol gave a mixture of 3-epimers $(\alpha: \beta$ $4: 1$ by ${ }^{1} \mathrm{H}$ n.m.r.). Satisfactory elemental analyses were not obtained for this thermolabile compound.
$3 x, 17 \beta$-Diacetoxy-4 4 -chloro-4,5-epoxy-5 β-androstane (7b).The 5β-epoxy $3 x$-alcohol (7 a) (500 mg) in dry pyridine (10 ml) was treated with acetic anhydride (5 ml) at room temperature. After 30 min reaction (monitored by t.l.c.) was complete and the mixture was diluted with ice-water, acidified with dilute HCl , and extracted with ether. Evaporation left a crystalline residue (510 mg), m.p. $125-129^{\circ} \mathrm{C}$. Recrystallization gave the 5β epoxy $3 x$-acetate ($7 \mathbf{b}$) $\left(387 \mathrm{mg}\right.$), m.p. $127-130^{\circ} \mathrm{C}$ (from dichloromethane-acetone) (Found: $\mathrm{C}, 64.2 ; \mathrm{H}, 7.8 ; \mathrm{Cl}, 10.1$. $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{ClO}_{5} \cdot 0.25 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ requires $\mathrm{C}, 63.9 ; \mathrm{H}, 7.7 ; \mathrm{Cl}, 10.1 \%$; sample dried at $25^{\circ} \mathrm{C}$).
17β-Acetoxy-4 3 -chloro- 3α-hydroxy-4,5-epoxy- 5α-androstane (8a). -The $3 x$-alcohol (4) (254 mg) in dichloromethane (2 ml) was cooled in an ice-bath and $85 \% \mathrm{w} / \mathrm{w} m$ CPBA (447 mg) was added. After 24 h reaction was not complete (t.l.c.); a second portion of m CPBA (152 mg) was added and the reaction continued for a further 24 h . The mixture was worked up as for the 5β-epoxy alcohol (9a) to give the 5α-epoxy alcohol ($8 \mathbf{8}$) $(68 \mathrm{mg}$), m.p. $128-133^{\circ} \mathrm{C}$ (from dichloromethane-methanol); further recrystallization gave a pure sample (25 mg), m.p. $131-134{ }^{\circ} \mathrm{C}$ (Found: C, 65.6; $\mathrm{H}, 8.1 ; \mathrm{Cl}, 9.4 . \mathrm{C}_{21} \mathrm{H}_{31} \mathrm{ClO}_{4}$ requires $\mathrm{C}, 65.9$; H, 8.2; Cl, 9.3%).
$3 x, 17 \beta$-Diacetoxy-4 β-chloro-4,5-epoxy-5 α-androstane ($\mathbf{8 b}$)-The 5α-epoxy 3α-acetate ($8 \mathbf{a}$) $(68 \mathrm{mg})$ was treated with acetic anhydride and pyridine as described for the acetylation of (7a), to give the $5 x$-epoxy $3 x$-acetate ($8 \mathbf{b}$) (50 mg), m.p. $206-210^{\circ} \mathrm{C}$ (from dichloromethane-methanol) (Found: C, $64.8 ; \mathrm{H}, 7.8 ; \mathrm{Cl}$, 8.6. $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{ClO}_{5}$ requires $\mathrm{C}, 65.0 ; \mathrm{H}, 7.8 ; \mathrm{Cl}, 8.3 \%$).
17β-Acetoxy-4x-chloro- 3β-hydroxy-4,5-epoxy-5 β-androstane (9a).--To the 3β-alcohol ($\mathbf{5 a}$) (250 mg) in dichloromethane (50 ml) was added $85 \% \mathrm{w} / \mathrm{w} \mathrm{mCPBA}(275 \mathrm{mg})$, and the solution was kept at room temperature until no starting material remained (t.l.c.; 18 h). The organic layer was washed thoroughly with aqueous 10° \% sodium sulphite, aqueous 5% sodium carbonate, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) , and evaporated at reduced pressure and room
temperature. The crystalline residue showed two components on t.l.c. ($5 \alpha: 5 \beta \quad 1: 2.5$ by h.p.l.c.). Recrystallization gave the 5β-epoxy 3β-alcohol (9a) (200 mg), m.p. $130-133^{\circ} \mathrm{C}$ (from dichloromethane-ethyl acetate) (Found: C, 65.9; H, 8.5; Cl, 9.3. $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{ClO}_{4}$ requires C, $65.9 ; \mathrm{H}, 8.2 ; \mathrm{Cl}, 9.3 \%$). The ${ }^{1} \mathrm{H}$ n.m.r. spectrum of the reaction mixture showed (by difference) the presence of the 5α-epoxy 3β-alcohol ($6 a$).
$3 \beta, 17 \beta$-Diacetoxy-4 4 -chloro-4,5-epoxy-5 3 -androstane ($9 \mathbf{b}$).The 5β-epoxy 3β-alcohol (9 a) (253 mg) was dissolved in dry pyridine (2.5 ml) and acetic anhydride (1.25 ml) was added. After 3 h at room temperature t.l.c. showed no starting material and the mixture was diluted with ice-water, acidified, and extracted with dichloromethane. The product gave the 5β epoxy 3β-acetate (9 b) $\left(228 \mathrm{mg}\right.$), m.p. $121-123^{\circ} \mathrm{C}$ (from cyclohexane); further recrystallization gave material of m.p. 123$125^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 65.0 ; \mathrm{H}, 7.9 ; \mathrm{Cl}, 8.6 . \mathrm{C}_{23} \mathrm{H}_{33} \mathrm{ClO}_{5}$ requires C , $65.0 ; \mathrm{H}, 7.8 ; \mathrm{Cl}, 8.3 \%$).
17β-Acetoxy-4-hydroxyandrost-4-en-3-one (10a)--(a) By thermolysis. (i) A flask containing the 5β-epoxy 3β-alcohol (9a) $(200 \mathrm{mg})$ attached to a water pump was immersed in an oil-bath preheated to $200^{\circ} \mathrm{C}$ and the temperature was maintained at $190-200^{\circ} \mathrm{C}$ until effervescence ceased (10 min). The residue was recrystallized to give the diosphenol (10a) (111 mg), m.p. $191-192^{\circ} \mathrm{C}$ (from dichloromethane-methanol) (lit., ${ }^{14}$ 194$196^{\circ} \mathrm{C}$). A preparation from 4-chlorotestosterone (7.5 g) without isolation of intermediate gave (10a) (3 g), m.p. 182$187^{\circ} \mathrm{C}$.
(ii) When the $5 x$-epoxy $3 x$-alcohol (8a) (22 mg) was treated as in (i), the diosphenol (10a) (14 mg), m.p. $190-192^{\circ} \mathrm{C}$ was obtained.
(iii) When the 5β-epoxy 3α-alcohol (7a) (24 mg) was treated as in (i), the diosphenol (10a) (12 mg), m.p. $189-190^{\circ} \mathrm{C}$ was obtained.
(iv) When the $5 x$-epoxy 3β-alcohol ($6 \mathbf{6}$) (100 mg) was treated as in (i) the diosphenol (10a) (55 mg), m.p. $184-186{ }^{\circ} \mathrm{C}$ was obtained.

All products showed identical ${ }^{1} \mathrm{H}$ n.m.r. spectra, in agreement with expectation for the diosphenol (10a).
(b) By treatment with zinc-copper couple. (i) To the 5β-chloro diosphenol (11a) (100 mg) in ethanol (5 ml) was added $\mathrm{Zn}-\mathrm{Cu}$ couple ${ }^{18}(1.3 \mathrm{~g})$ and the mixture was heated to reflux for 30 min to give the diosphenol (10a) (40 mg), m.p. $188-193^{\circ} \mathrm{C}$ (lit., ${ }^{14}$ m.p. 194-196 ${ }^{\circ} \mathrm{C}$).
(ii) Treatment of the $5 x$-chloro diosphenol (12a) (70 mg) with $\mathrm{Zn}-\mathrm{Cu}$ couple (900 mg) in ethanol (3 ml) gave the diosphenol (10a) (30 mg), m.p. $189-192{ }^{\circ} \mathrm{C}$, identical (${ }^{1} \mathrm{H}$ n.m.r.) with that obtained in (i).
(iii) To the 5β-chloro diacetate ($\mathbf{1 1 b}$) (100 mg) in ethanol (5 $\mathrm{ml})$ was added freshly prepared $\mathrm{Zn}-\mathrm{Cu}$ couple ${ }^{18}(1.3 \mathrm{~g})$. The mixture was heated to reflux for 30 min , filtered, and evaporated at reduced pressure. The product was passed over neutral alumina in dichloromethane-hexane to give the diosphenol diacetate ($\mathbf{1 0 b}$) (54 mg), m.p. $168-171^{\circ} \mathrm{C}$ (from acetone) (lit., ${ }^{14}$ $170-172^{\circ} \mathrm{C}$); and the diosphenol (10a) (22 mg), m.p. 189$192^{\circ} \mathrm{C}$ (from dichloromethane-methanol) (lit., ${ }^{14}$ 194-196 ${ }^{\circ} \mathrm{C}$).
(iv) Similar treatment of the 5α-chloro diosphenol (12b) (100 mg) gave the diosphenol acetate ($\mathbf{1 0 b}$) $(53 \mathrm{mg}$), m.p. 168 $171^{\circ} \mathrm{C}$, and the diosphenol (10a) (23 mg), m.p. $186-190^{\circ} \mathrm{C}$.

173-Acetoxy-5-chloro-3-hydroxy-5 β-androst-2-en-4-one (11a). -The 5β-epoxy ketone (3) (200 mg) was heated to reflux in pyridine for 45 min , after which no starting material remained (t.l.c.; two developments). The solution was poured into icewater and extracted with ether to give the 5β-chloro diosphenol (11a) (120 mg), m.p. $162-166^{\circ} \mathrm{C}$ (from cyclohexane) (Found: C, 66.5; $\mathrm{H}, 7.6 ; \mathrm{Cl}, 9.1 . \mathrm{C}_{2}{ }_{1} \mathrm{H}_{29} \mathrm{ClO}_{4}$ requires C, 66.2; $\mathrm{H}, 7.7 ; \mathrm{Cl}$, 9.3%).

3,17 β-Diacetoxy-5-chloro-5 β-androst-2-en-4-one (11b).-The 5β-chloro diosphenol (11a) (100 mg) on treatment with acetic anhydride-pyridine $(1: 2)(1.5 \mathrm{ml})$ gave the 5β-chloro diacetate (11b) (70 mg), m.p. $198-201^{\circ} \mathrm{C}$ (from dichloromethaneacetone) (Found: C, $65.6 ; \mathrm{H}, 7.4, \mathrm{Cl}, 8.1 . \mathrm{C}_{23} \mathrm{H}_{31} \mathrm{ClO}_{5}$ requires C, $65.35 ; \mathrm{H}, 7.4 ; \mathrm{Cl}, 8.4 \%$).

173-Acetoxy-5-chloro-3-hydroxy-5 α-androst-2-en-4-one

 (12a).-The $5 x$-epoxy ketone (2) $(60 \mathrm{mg})$ was heated to reflux in pyridine for 45 min , after which no starting material remained (t.l.c.) and a more polar component had been formed. The solution was diluted with water and extracted with ether to give the diosphenol (12a), m.p. 178-184 ${ }^{\circ} \mathrm{C}$ (from acetone) (Found: $\mathrm{C}, 66.0 ; \mathrm{H}, 7.6 ; \mathrm{Cl}, 9.4 . \mathrm{C}_{21} \mathrm{H}_{29} \mathrm{ClO}_{4}$ requires $\mathrm{C}, 66.2 ; \mathrm{H}, 7.7 ; \mathrm{Cl}$, 9.3%).3,17ß-Diacetoxy-5-chloro-5 α-androst-2-en-4-one (12b).-The 5α-chloro diosphenol (12a) (200 mg) on treatment with acetic anhydride-pyridine $(1: 2 ; 3 \mathrm{ml})$ gave the diacetate (12b) (150 mg), m.p. $207-210^{\circ} \mathrm{C}$ (from dichloromethane-acetone) (Found: $\mathrm{C}, 65.0 ; \mathrm{H}, 7.45 ; \mathrm{Cl}, 8.5 . \mathrm{C}_{23} \mathrm{H}_{31} \mathrm{ClO}_{5}$ requires $\mathrm{C}, 65.25$; $\mathrm{H}, 7.4 ; \mathrm{Cl}, 8.4 \%$).
17β-Acetoxy-4-hydroxyandrosta-4,6-dien-3-one (13).-(i) A flask containing the 5α-epoxy ketone (2) $(600 \mathrm{mg})$ attached to a water pump was immersed in an oil-bath preheated to $240{ }^{\circ} \mathrm{C}$ for 5 min . The residue was recrystallized to give the dienol (13) (150 mg), m.p. $197-198^{\circ} \mathrm{C}$ (from dichloromethane-acetone) (Found: C, 73.1; H, 8.4. $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{4}$ requires $\mathrm{C}, 73.2 ; \mathrm{H}, 8.2 \%$).
(ii) When the 5β-epoxy ketone (3) $(200 \mathrm{mg})$ was treated as in (i) the dienol (13) (105 mg), m.p. $188-194^{\circ} \mathrm{C}$, was obtained.
(iii) When the 5β-chloro diosphenol (11a) (240 mg) was treated as in (i) the dienol (13) (123 mg), m.p. $189-193^{\circ} \mathrm{C}$, was isolated.
(iv) When the 5α-chloro diosphenol (12a) (350 mg) was treated as in (i) the dienol (13) (220 mg), m.p. $186-190^{\circ} \mathrm{C}$, was isolated.

All products gave ${ }^{1} \mathrm{H}$ n.m.r. spectra corresponding to the dienol (13).

Thermolysis of $3 \beta, 17 \beta$-Diacetoxy- 4β-chloro-4,5-epoxy- $5 \alpha-$ androstane ($6 \mathbf{b}$).-A flask containing the 5α-epoxy 3β-acetate ($6 \mathbf{b}$) (40 mg) attached to a water pump was immersed in a preheated oil-bath $\left(210^{\circ} \mathrm{C}\right)$ maintained at $190-210^{\circ} \mathrm{C}$ for 10 min . Three major components were separated by h.p.l.c. The least polar fraction (13.6 mg) gave $5,17 \beta$-diacetoxy- 3β-chloro5β-androstan-4-one (14), m.p. $235-236.5^{\circ} \mathrm{C}$ (from dichloro-methane-methanol) (Found: $\mathrm{C}, 65.1 ; \mathrm{H}, 7.8 ; \mathrm{Cl}, 8.6$. $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{ClO}_{5}$ requires $\mathrm{C}, 65.0 ; \mathrm{H}, 7.8 ; \mathrm{Cl}, 8.3 \%$). The most polar fraction (12.4 mg) gave $5,17 \beta$-diacetoxy- 3α-chloro- 5β-andro-stan-4-one (15), m.p. $136-137^{\circ} \mathrm{C}$ (from dichloromethanemethanol) (Found: $\mathrm{C}, 64.75 ; \mathrm{H}, 7.8 ; \mathrm{Cl}, 8.3 . \mathrm{C}_{23} \mathrm{H}_{33} \mathrm{ClO}_{5}$ requires $\mathrm{C}, 65.0 ; \mathrm{H}, 7.8, \mathrm{Cl}, 8.3 \%$). The fraction of intermediate polarity (7 mg) gave ($1^{\prime} \mathrm{S}, 5^{\prime} \mathrm{S}$)- $5^{\prime} 17 \beta$-diacetoxy- 2^{\prime}-methylspiro-[7,19-dinordes-A-androstane-10,1'-cyclohex-2'-en]-6'-one (16), m.p. 193-194.5 ${ }^{\circ} \mathrm{C}$ (from dichloromethane-methanol) (Found: $\mathrm{C}, 71.25 ; \mathrm{H}, 8.2 . \mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{5}$ requires $\mathrm{C}, 71.1 ; \mathrm{H}, 8.3 \%$).

Thermolysis of $3 \alpha .17 \beta$-Diacetoxy- 4α-chloro- 4,5 -epoxy- 5β androstane (7b).-A flask containing the 5β-epoxy 3α-acetate (7 b) (445 mg) attached to a water pump was immersed in a preheated oil-bath $\left(130^{\circ} \mathrm{C}\right)$ until melting and evolution of gas was complete (3.5 min). The major components were separated by column chromatography over silica gel in dichloromethane; components were eluted in the following order.

Combined fractions (180 mg) were recrystallized to give $5,17 \beta$-diacetoxy- 3β-chloro- 5α-androstan-4-one (17) (56 mg), m.p. 258-259 ${ }^{\circ} \mathrm{C}$ (from dichloromethane-acetone) (Found: C,
65.0; $\mathrm{H}, 7.8 ; \mathrm{Cl}, 8.5 . \mathrm{C}_{23} \mathrm{H}_{33} \mathrm{ClO}_{5}$ requires $\mathrm{C}, 65.0, \mathrm{H}, 7.8 ; \mathrm{Cl}$, 8.3%).

Fractions (22 mg) were further purified by h.p.l.c. (15 mg) and recrystallized to give 17β-acetoxyandrosta-2,5-dien-4-one (19) $\left(11 \mathrm{mg}\right.$), m.p. $180-183^{\circ} \mathrm{C}$ [from light petroleum (b.p. $60-$ $80^{\circ} \mathrm{C}$)] (lit., ${ }^{19} 179-181^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ n.m.r. spectrum in agreement with published values. ${ }^{19}$

Fractions (156 mg) were recrystallized to give $3 \beta, 17 \beta$-diacet-oxyandrost-5-en-4-one (18) (60 mg), m.p. 102-103 and 125$128{ }^{\circ} \mathrm{C}$ (from ether-acetone) (Found: $\mathrm{C}, 70.9 ; \mathrm{H}, 8.2 . \mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{5}$ requires $\mathrm{C}, 71.1 ; \mathrm{H}, 8.3 \%$).

Fractions (21 mg) were recrystallized to give $4,17 \beta$-diacetoxy-androst-4-en-3-one ($\mathbf{1 0 b}$) (15 mg), m.p. $\quad 171-173^{\circ} \mathrm{C}$ (from acetone) (lit., ${ }^{14} 170-172^{\circ} \mathrm{C}$). When the reaction was carried out at $190-200^{\circ} \mathrm{C}$ a larger proportion of (10b) and (19) was obtained.
$3 x-17 \beta$-Diacetoxy- 5 -chloro- 5β-androstane (20).-The $5 \alpha-$ epoxy 3α-acetate ($\mathbf{8 b}$) $(40 \mathrm{mg})$ attached to a water pump was immersed in a preheated oil-bath $\left(210^{\circ} \mathrm{C}\right)$ maintained at $190-$ $210^{\circ} \mathrm{C}$ for 10 min . The residue was recrystallized to yield the $3 x-$ acetoxy-5 3 -chloro 4 -ketone (20) (24 mg), m.p. $208-210^{\circ} \mathrm{C}$ (from dichloromethane-methanol) (Found: C, 65.3; H, 7.8; Cl, 8.5. $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{ClO}_{5}$ requires $\mathrm{C}, 65.0 ; \mathrm{H}, 7.8 ; \mathrm{Cl}, 8.3 \%$).
$3 \beta, 17 \beta$-Diacetoxy-5-chloro-5 α-androstan-4-one (21).-A flask containing the 5β-epoxy 3β-acetate $(9 b)(8.2 \mathrm{~g})$ attached to a water pump was immersed in a preheated oil-bath $\left(210^{\circ} \mathrm{C}\right)$ maintained at $190-210^{\circ} \mathrm{C}$ for 10 min . The crystalline residue gave the 3β-acetoxy- 5α-chloro 4 -ketone ($\mathbf{2 1}$) (7.2 g), m.p. $172-173^{\circ} \mathrm{C}$ (analytical sample, m.p. 173-173.5 ${ }^{\circ} \mathrm{C}$) (from di-chloromethane-methanol) (Found: $\mathrm{C}, 65.0 ; \mathrm{H}, 7.8 ; \mathrm{Cl}, 8.5$. $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{ClO}_{5}$ requires $\mathrm{C}, 65.0 ; \mathrm{H}, 7.8 ; \mathrm{Cl}, 8.3 \%$). A preparation from 4-chlorotestosterone acetate (1.8 g) without isolation of intermediates gave (21) (760 mg), m.p. $165-168^{\circ} \mathrm{C}$.
$3 \beta, 17 \beta$-Diacetoxy- 5α-androstan-4-one (22). .The 3β-acet-oxy- 5α-chloro 4-ketone ($\mathbf{2 1)}$) 518 mg) was dissolved in ethanol (25 ml) and $\mathrm{Zn}-\mathrm{Cu}$ couple ${ }^{18}(5 \mathrm{~g})$ was added. The mixture was stirred for 5 min at room temperature, then filtered, and the filtrate was evaporated to dryness. Chromatography of the crude product over neutral alumina in benzene-hexane mixtures gave the diacetate (22) (154 mg), m.p. $137-139^{\circ} \mathrm{C}$ (Found: C, 70.5; H, 8.7. $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{5}$ requires C, $70.7 ; \mathrm{H}, 8.8 \%$).

Acknowledgements

We thank the Medical Research Council of Canada and the Research Board of the University of Manitoba for financial assistance. We also thank the Manitoba Health Research Council for support for the purchase of the Bruker AM300 spectrometer. We are grateful to Diane Smith, Faculty of Pharmacy, University of Manitoba, for the h.p.l.c. analyses.

References

1 R. N. McDonald in 'Mechanisms of Molecular Migrations,' ed. B. G. Thyagarajan, Interscience, New York, 1971, p. 67.
2 R. N. McDonald and R. C. Cousins, J. Org. Chem., 1980, 45, 2976.
3 S. A. Kline, J. J. Solomon, and B. L. Van Duuren, J. Org. Chem., 1978, 43, 3596.
4 J. Gasteiger and C. Herzig, J. Chem. Res., 1981, (S) 113; (M) 1101.
5 R. N. McDonald and T. E. Tabor, J. Am. Chem. Soc., 1967, 89, 6573.
6 P. Chamberlain, M. L. Roberts, and G. H. Whitlam, J. Chem. Soc. B, 1970, 1374.
7 N. S. Bhacca and D. H. Williams, 'Applications of NMR Spectroscopy in Organic Chemistry,' Holden-Day, San Francisco, 1964.

8 J. K. M. Sanders and J. D. Mersh, Prog. Nucl. Magn. Reson. Spectrosc., 1982, 15, 353.
9 W. P. Aue, E. Bartholdi, and R. R. Ernst, J. Chem. Phys., 1976, 64, 2229.

10 A. Bax and G. Morris, J. Magn. Reson., 1981, 42, 501.
11 D. M. Doddrell, D. T. Pegg, and M. R. Bendall, J. Magn. Reson., 1982, 48. 323.
12 PANIC, Program Version 840419.0, Bruker-Spectrospin, Fallanden, Switzerland.
13 K. Marat. J. F. Templeton, and V. P. Sashi Kumar, Magn. Reson. Chem., 1987, 25. 25.

14 B. Camerino, B. Patelli, and A. Vercellone, J. Am. Chem. Soc., 1956, 78, 3540.
15 H. Mori, Chem. Pharm. Bull., 1962, 10, 429.
16 J. Dmochowska-Gladysz and A. Siewinski, Bull. Acad. Pol. Sci., 1977, 25, 581.
17 E. J. Corey and A. Venkateswarlu, J. Am. Chem. Soc., 1972, 94, 6190.
18 J. F. Templeton and C. W. Wie, Can. J. Chem., 1975, 53, 1693.
19 J. R. Hanson, D. Raines, and H. Wadsworth, J. Chem. Soc., Perkin Trans. 1, 1977, 499.

[^0]: ${ }^{a}$ Insufficient material for detailed analysis. ${ }^{b}$ Ring A shifts are the result of iterative simulation. ${ }^{c}$ Shift obtained from COSY spectrum. ${ }^{d}$ Shift obtained from heteronuclear correlation spectrum. ${ }^{e}$ Not iterated; lines highly overlapped. ${ }^{f}$ Shift obtained from n.O.e. difference experiment.
 ${ }^{4}$ Shift obtained from difference double-resonance experiment.

